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Abstract 
Certification has the goal to offer a general scheme that indicates the quality or compatibility 
of a component in respect to certain properties. Therefore two tasks have to be performed. 
First an indicator for the fulfilment of the property has to be determined and second a method 
to show that this indicator is fulfilled has to be presented.  

This deliverable shows two approaches for component certification. The first approach is a 
model based certification for time. When a component has to be integrated into a bigger 
system its response time of the component has to be fast enough to allow an adequate 
response time of the whole system. Thus, rules for composition of components are defined 
and the certificate of the whole system can be derived from the certificates of the 
subcomponents. The presented approach is representative for a model based time-
certification for components which are developed with the CASE tool AutoFOCUS and are 
integrated in layered architectures. 

The second approach deals with component certification of reusability. In contrast to the first 
approach, which is more or less a technical manual for certification, this approach is focused 
on the integration of the activity of certification into an existing software engineering process. It 
describes a process model including roles and their tasks to certify a component for its use in 
several systems. The main points of the approach are the dedicated role of a test & 
integration architect, who is responsible for the certification and the application of templates 
as guidelines for the component developers. The example approach has been tested in the 
environment of a Diagnosis-Software-System within Jabil. 
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1 Introduction 
The complexity of embedded systems increases constantly. In order to cope with this 
complexity, software projects do not produce their software form the scratch, but try to reuse 
existing software as far as possible. However, this fact forces the developers to rely on the 
quality of the software to be integrated in the project. In the context of EMPRESS we talk 
about component based systems and by this, the software to be integrated is a component. 
The quality of a component can mainly be described with non functional properties like 
reliability, efficiency or reusability (see [ISO9126]). To be able to decide, if a component fits in 
the system to be developed, the quality of the integrated components has to be known. 

The idea of certification (as shown in Figure 1) is that the user of a component relies on the 
verification and testing results of a third person which is called certifier. By this, the user of a 
component can save the effort of checking the component and only has to read the certificate, 
in which the properties of a component are guaranteed. The certifier can be a physical person, 
but also the results of tools that check the software can be seen as certificates (see [SW01]). 
One essential point of certification is that the user has to trust in the certifier since if the 
certifier is not reliable, the components have to be checked by the user again and the 
certificate becomes useless. 

 

Figure 1: Certification in Software Projects 

Certification has the goal to offer a general scheme used by all developers that indicates the 
quality or compatibility of a component in respect to certain properties. Therefore two tasks 
have to be performed. First an indicator for the fulfilment of the property has to be determined 
and second a method to show that this indicator is fulfilled has to be presented. 

The indicator can be presented in many ways. In the following these ways are demonstrated 
with the example of reliability. One way is a “formal demonstration that a system or component 
complies with its specified requirements and is acceptable for operational use” [Emp03]. This 
means for example to check a direct metric like test coverage that allows a direct conclusion 
on the reliability. Another way is to check a certain development method with an emphasis on 
the reliability, like for example the V-Model. A detailed suggestion for reliability certification 
can be found in [IEC61508]. 

This deliverable shows two approaches for component certification. The first approach is a 
model based certification for time. When a component has to be integrated into a bigger 
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system its response time of the component has to be fast enough to allow an adequate 
response time of the whole system. The basic idea of the approach is similar to the idea of 
[GZ01]: Rules for composition of components are defined and the certificate of the whole 
system can be derived from the certificates of the subcomponents. The presented approach is 
representative for a model based time-certification for components which are developed with 
the CASE tool AutoFOCUS and are integrated in layered architectures. 

The second approach deals with component certification for reusability. In contrast to the first 
approach, which is more or less a technical manual for certification, this approach is focused 
on the integration of the activity of certification into an existing software engineering process. It 
describes a process model including roles and their tasks to certify a component for its use in 
several systems. One main point of the approach is the dedicated role of a test & integration 
architect, who is responsible for the certification and the application of templates as guidelines 
for the component developers. The example approach has been tested in the environment of 
a Diagnosis-Software-System within Jabil. 

The two presented approaches should not be seen as alternatives but as examples for 
complementary tasks in the field of certification. Some ideas of the approaches can be well 
combined (see Section 4). 
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2 Methods for Component Certification on Efficiency 

2.1 Overview 

In this chapter TU München presents an approach for the certification of components 
concerning their accordance to the specified time. The certification applies to the safety 
critical parts of the system (components) that have been identified during the risk analyses. 
The certification of a component is a formal demonstration that this component complies with 
its specified requirements and is acceptable for operational use [Emp03]. 

The presented approach suggests a method for the certification of systems with a component-
based architecture. It covers the certification of the whole component architectures as well as 
of “atomic” components themselves. Figure 2 gives an overview over the activities and 
artefacts that are involved in the method. 

 

Figure 2: The Certification Approach 

The components are designed using the AutoFOCUS paradigm (see [AutoFOCUS]). By this 
one task is to map the time-requirements to a formal description that can be verified in the 
system. 

The verification of the architecture relies on the certificates of its constituent components. This 
permits the consideration of different design decisions or feasibility of substitution of 
components in a software system with reduced effort. The composition of the components to 
architectures obeys the certain rules, which limit possible type combinations and interaction 
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patterns between the components. This limitation easies the analysis of architectures and the 
exchange of components and allows the predictability of system’s time behaviour and thus its 
certification.  

The atomic components do not underlie these architectural restrictions. No assumptions about 
their internal design are made. The approach suggests certifying the components by 
checking, if the AutoFOSUC-design of a component satisfies the time requirements of the 
certificate. Since the description of components with AutoFOCUS is on a high abstraction 
level, the code generation and the deployment have to be considered as interfering factors.  

The motivation for this approach is that there already exist tools and methods to check the 
consistency of an AutoFOCUS description and its implementation, for example by automatic 
test case generation, execution and coverage measurement as well as verified code 
generation algorithms. However, the compliance between a specification and a document on 
the abstraction level of AutoFOCUS can be guaranteed only by adducing additional manual 
effort.  

The emphasis of the presented approach is the certification of time behaviour. However 
similar considerations can be made for other aspects of software systems, like resource 
consumption. 

The next section (section 2.2) explains the design model of AutoFOCUS. The succeeding 
section (2.3) introduces a case study, which is the basis for the demonstration of the 
presented approach. Section 2.4 shows which relevant time requirements exist and how they 
can be mapped to the design. The next two sections cover methods to certificate the time 
properties of component architectures (section 2.5) and of the atomic components of the 
architecture (section 2.6). The conclusion at the end of this chapter summarizes the results 
and gives an outlook to future research work and applications. 

2.2 The Design Paradigm 

AutoFOCUS [AutoFOCUS] is a tool for graphically specifying embedded systems on the 
grounds of a simple, formally defined design paradigm. It supports different views on the 
model: structure, behaviour, interaction and data type view. Each view concentrates on a 
certain part of the specified model: 

• The architectural/structural view shows, how the system is decomposed into 
components and by what ports and channels they are interconnected.  

• The behavioural view describes the behaviour of each component by a finite state 
machine.  

• The data type view defines the data types and functions to be used.  

• The interaction view shows an exemplary set of interactions between components. 

In the next, the views are described in detail. The certification approach is based on the 
structural, behavioural and data type views on the system. The interaction view is a basis for 
the test automation, which is used for the certification of the implementations. However, it is 
not directly used by the approach presented here. For details see [AutoFOCUS]. 

The AutoFOCUS tool and its design paradigm were chosen to demonstrate the abilities of the 
certification approach, because of the simple, precise semantics the tool is based on. 
However the approach can be adapted to other (graphical) description dialects (e.g. UML-RT) 
and tools, if they offer similar views on the modelled systems. 
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2.2.1.1 Architectural View 

In AutoFOCUS a distributed system is modelled as a network of components, which 
communicate via channels. The architecture of a system is described with System Structure 
Diagrams (SSD). Figure 3 shows a typical SSD, which models a simple airbag controller. The 
elements of these diagrams are: 

• Components, depicted as named rectangles. Components can be hierarchically 
decomposed. Every SSD shows an internal structure of a component, which consists 
of subcomponents and their interconnections. The leaves in this component hierarchy 
are called "atomic” components. Since such hierarchies can be flattened 
automatically, the presented approach concentrates on the atomic components, thus 
hierarchical SSDs won't be addressed in the remainder of this chapter.  

• Ports are special entry and exit points in the SSDs. They are visualized as solid 
circles (output port) or empty circles (input port) in the diagrams. Ports are typed and 
can be labelled with names. For example, "on-off-indicator:boolean" is a port called 
“on-off-indicator” of type “boolean”. All ports attached to a component define the 
component's interface. Ports not related to a component in the diagram are meant to 
define the “outside world” and thus the component’s interface to its environment.  

• Channels are depicted as directed named lines. Channels are typed and have a 
direction. They are connected to components at ports. A channel must connect exactly 
one input port with exactly one output port. The direction of a channel is always from 
its output to its input port. Note that unlike in UML-class-diagrams the connections 
between components transfer signals and are not used for referencing each other. 
Channels are named and typed using the same syntax as for ports. The type of a 
channel must equal the types of its ports.  

In Figure 3 the component "Airbag Control" is connected to another component "Ignition" by 
two channels. The component "Airbag Control" is also connected with the environment’s port 
via the channel “blast”. This port represents the interface of the actuator of the modelled 
airbag, responsible for the blasting. 

 

Figure 3: Example for a simple SSD 

2.2.1.2 Behavioural View 

The behaviour of an atomic AutoFOCUS component is described by an extended Mealy 
automaton. Its graphical representation is captured in State Transition Diagrams (STD). 
Figure 4 contains an example of a typical STD and SSD of an atomic component. STDs 
consist of the following elements: 

• Control states are depicted by named ovals. The initial state is marked with a black 
dot. 

• The values of local variables build the data state of the component’s automaton. 
Hence the internal state of a component consists of a control state and a data state. 
Local variables are declared using the QuestF language (see next section). The 

Ignition blast:signal 

Ignition-status:bool 

Ignition-status-request:signal Airbag 
Control 
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syntax is (in EBNF [ISO14977]): 

local_variable_definition ::= type : name = init_value ; 

• Transitions are depicted as annotated arrows between states. If a transition starts 
and ends at the same state, it is called "self-loop".  The label is annotated by a 
precondition, input patterns, output patterns and actions separated by colons. In 
addition, symbolic names can be used. The syntax of a transition annotation is: 

transition_annotation ::= [ symbolic_name ] transition 
transition ::= [ precondition ] : [ input_patterns ] : [ output_patterns ] : [ actions ] 

The semantic of a transition is: if the input patterns do match and the precondition is 
true, then the output patterns evaluation and actions can be performed. So the 
execution of one transition can be subdivided into examination (input pattern + 
precondition) and firing (output pattern + actions). The examination condition can be 
empty, i.e. the transition can always be executed. The semantic and syntax of every 
part-construct of a transition is given below. 

o input_patterns ::= input_port_id ? qterm [ ; input_patterns ] 

The corresponding transition is only executable if the value of the input port 
matches the pattern. For example "sensor-hw?ok" is true if and only if there is 
a value “ok” on the port “sensor-hw”. If the pattern contains variables, they will 
be bound to their actual values and can be used later in expressions for 
precondition, output patterns and actions. Consider, for example, the pattern 
“p?Msg(x)”. It expects a value of type “Msg” on port “p”. This value will be 
written to a temporal variable “x”, which can be used in other parts of transition. 
After the execution of the transition, its temporal variables are removed. 

o precondition ::= boolean_qterm 

A precondition is a Boolean expression containing local variables and temporal 
variables, bound in the input patterns. For the transition to be executable, the 
precondition must evaluate to “true”. 

o output_patterns ::= output_port_id ! qterm [ ; output_patterns ] 

Output patterns determine what values will be written to the specified output 
ports, when the transition is executed. For example, the execution of 
"alarm!false" will result in sending the value “false” through the port “alarm”. 

o actions ::= local_variable_id = qterm [ ; actions ] 
Actions assign values to local variables. 

  

Pressure 
Sensor 

pressure-signal:signal 

sensor:signal 
Pressure_High 

Pressure_ok 

:sensor?:: 

:sensor?present: 
pressure-signal!present: 
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Figure 4: Example STD (right) and SSD (left) for a Component "Pressure Sensor" 

An execution step of an AutoFOCUS component is equal to the firing of one transition of its 
automaton. The transition to be fired in the next state is chosen non-deterministically from the 
set of outgoing transitions of the current state with their examination evaluated to “true”. Note 
that each state has an idle transition that is activated each time when no other transition can 
be fired from this state. This transition needs not to be explicitly drawn in STDs. 

2.2.1.3 Data View 

The data view of a system is defined using QuestF, a functional language to describe data 
types and functions on them [QUG00].  

QuestF has three predefined data types, namely Boolean, integer and float. In addition it 
allows defining complex hierarchical data types. The general form of a data type declaration is 

dataType =  C1(sel11:Type11, ..., sel1n:Type1n) | ... |  
Cm(selm1:Typem1, ... selmo: Typemo) 

Thereby Ci is called "constructor". It can be used to construct a value of the corresponding 
type. A constructor can have an arbitrary number of arguments, including no arguments 
(constant). For each constructor a discriminator function is_Ci is generated. The selij are 
called selectors. For a user-defined value, generated by a constructor term with arguments, 
each selector returns the appropriate argument. If no names are given for the selectors, 
AutoFOCUS automatically generates them by using the constructor names and a consecutive 
number. For example, an AutoFOCUS channel can be defined as a data type in the following 
way: 

data Channel(alpha) = NoVal | Msg(val:alpha); 

This definition means that a channel of type Channel(alpha) can either be empty (denoted by 
“NoVal”) or can carry a message of type “alpha” (where “alpha” is a type parameter, and is 
replaced by the actual type of the channel, e.g. integer).  

The grammar rules for building QuestF terms are (in EBNF [ISO14977]): 

qterm ::=  qbase [: type] 
qbase ::=  [ + | - ] id |  

( qterm [ infid qterm] ) | 
if qterm then qterm [else qterm] fi | 
unop ( qterm ) 

Whereas "unop" stands for an unary operator and "infid" stands for an infix operator. A list of 
all defined operators and a description of functional data types is given in Appendix A. 

2.2.1.4 Time Semantics in AutoFOCUS 

In the AutoFOCUS design model time is represented by discrete steps (called "ticks") 
generated by a global clock. In each tick in every component the input values are read from 
input ports, one transition is fired and its outputs are written to output ports. The produced 
outputs are sent through channels to their destination ports exactly when the next tick begins. 
The values of ports are valid only for the duration of one tick. So the tick semantic models a 
synchronous communication with buffer length one between AutoFOCUS components. 

2.3 The Case Study – Airbag 

The certification of time and resource behaviour of components will be demonstrated with the 
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case study of a simplified airbag controller of a co-driver’s seat in a car.  

2.3.1 The Design Model 

The interacting components are the airbag control itself, the ignition and the child lock 
controllers (see overview in Figure 5, and SSD in Figure 6), which communicate with an 
environment, build by the airbag actuator, which blasts the airbag, as well as pressure, ignition 
and child lock sensors. 

 

Figure 5: Overview of the Case Study 

 

 

Figure 6: SSD of the Airbag Controller 

The behaviour of this system is described as follows: If the pressure sensor signals a 
dangerous pressure on the car, the airbag control component will expand the co-driver’s 
airbag if and only if the ignition is on and the child lock is deactivated. After the airbag has 
expanded, the control won't do anything any more. Figure 7 shows this behaviour in a STD. 
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Airbag 
Control 

pressure-signal:signal blast:signal 

Child Lock 

childlock-status:bool 

childlock-status-request:signal 

Ignition ignition-status:bool 

ignition-status-request:signal 

ignition-on:bool childlock-on:bool 
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Figure 7: STD of the Component Airbag Control.  

Figure 8and Figure 9 show the state transition diagrams for the simplified ignition and child 
lock. They both have an identical behaviour: the ignition/child lock is activated as soon as a 
signal "true" arrives at the port "ignition-on" and “chlildlock-on”. The component gets in the 
state “off”, when a "false" arrives at these ports. 

 

Figure 8: STD of the Child Lock Component 

 

Figure 9: STD of the Ignition Component 

2.3.2 Requirements for Time and Resource Behaviour 

The specification of the airbag controller system consists of functional and non-functional 
requirements. Suppose the functional requirements were properly realized in the design of the 
system presented in the previous sections1, the non-functional requirements concerning the 

                                                  
1 The guarantee of this claim lies not in the scope of the presented approach. 

no_pressure Pressure_detected 

Ignition_on Airbag_blasted 

:pressure-signal?present:ignition-request!present: 

:ignition-status?false:: 

:childlock-status?true:: 

:childlock-status?false: 
blast!present: 

:ignition-status?true: 
childlock-request!present: 

On Off 

:childlock-on?false: 

:childlock-on?true: 

:childlock-status-request?present: 
childlock-status!true 

:childlock-status-request?present: 
childlock-status!false 

On Off 

:ignition-on?false: 

:ignition-on?true: 

:ignition-status-request?present: 
ignition-status!true 

:ignition-status-request?present: 
ignition-status!false 
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time and resource behaviour of the airbag controller system have to be certified next. 

Examples for time and resource requirements concerning the airbag system accompany the 
description of the certification approach in the remainder of this chapter. Here are some 
sample non-functional requirements: 

• the time between ignition-on and initialization of the airbag control system must take at 
most 2 seconds  

• after the pressure sensor signals a dangerous pressure, the airbag must expand in at 
most 1 second 

• after the pressure sensor signals dangerous pressure, the airbag control system must 
check the ignition in at most 0.5 seconds. 

• The airbag controller software is not allowed to allocate more than 400 Bytes of 
memory. 

2.4 Managing Requirements 

2.4.1 Classification of Time Requirements 

Time requirements usually comprise two parts: the designation of a time interval, indicated by 
its start and end point, and propositions about the duration of this time interval. This 
information is often formulated implicitly and thus not always easy to determine. This section 
introduces a classification of the time requirements according to the different types of the time 
intervals and timing conditions. 

There are two classes of timing conditions: absolute and relative. An orthogonal classification 
differentiates between conditions describing lower and upper bounds of time intervals. The 
classification of timing conditions is summarised in the following table: 

 Upper bound lower bound 

absolute in at most x seconds in at least x seconds 

relative Not take x times longer as at least x times longer as 

Relative requirements can be translated in absolute requirements by measuring the length of 
the interval, with which it is compared. Due to this fact only requirements with absolute timing 
conditions are treated in the rest of this chapter. 

The start and the end points of time intervals can be classified into three categories. This 
classification eases the later mapping into the design model of AutoFOCUS: 

• State-State: The time interval is described by states as start and end points of the 
interval. For example: "the time between the ignition is on and initialization of the 
airbag control system must take at most 2 seconds." 

• Event-State/State-Event: The time interval is described by an event as start point and 
a state as end point (or vice versa). For example: "after the pressure sensor signals 
dangerous pressure, the airbag control system must check the ignition in at most 0.5 
seconds." 

• Event-Event: Both the start point and the end point of the interval are events. For 
example: "after the pressure sensor signals dangerous pressure, the airbag must 
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expand in at most 1 second." 

Templates for time requirements can ease the above classifications and thus facilitate the 
translation of time requirements into the terms of design model. Consider the following 
template. It requires that at first the start and end points are specified (that are states or 
events) followed by the information about the length of the time interval: 

time-requirement ::= interval-def must be timing-cond 
interval-def ::= the time between [ state | event ] and [ state | event ] 
timing-cond ::= ( at least | at most ) abs-duration | rel-duration 
abs-duration ::= x (microseconds | milliseconds | seconds | minutes ) 
rel-duration ::= as long as interval-def | x times ( longer | shorter ) then interval-def 

2.4.2 Translating Time Requirements into Design Constraints 

The translation of time requirements into design constraints is done in three steps. Firstly, the 
requirements are translated into constraints which build on top of system structure diagrams 
(SSDs): those constraints refer to components, ports, channels, and abstract states. 
Secondly, the further translation to constraints building on top of state machines (STDs) is 
explained: those constraints refer to states, transitions, and ports. Additionally, the time 
mentioned in the requirement hast to be translated into the tick semantic of the design model. 
The last subsection summarizes the results of the translation process.  

2.4.2.1 System Structure Level (SSDs) 

This subsection describes how time requirements are translated into the design level of 
system structure diagrams (SSDs). The four classes of time requirements as described in the 
previous section (state/state, event/state, state/event, and event/event) have to be mapped to 
components, port-valuations and abstract states. Therefore, requirements events and 
requirements states have to be translated.  

A requirements event is translated into port valuations. For example, the time requirement "... 
the airbag must expand  …" can be translated into the port-assignment  

valuationAirbag Control(portblast==present) 

A requirement state is translated into an abstract state which has to be defined. Consider the 
example: "the time between ignition-on and the initialisation of the airbag must take at most 1 
second"; in this example, the requirements state "initialisation" can be mapped to "stateinitialized" 
(see Figure 10). Abstract states concern the whole system and can be depicted as hexagons.  

 

Figure 10: Translating a Requirements State to an Abstract State stateinitialized 

If the starting and the ending point of the interval described in the time requirement can be 
matched to port assignments, the corresponding time requirement can be written down as a 
predicate in the format 

time(Start; End; duration) 

where Start describes the events and states that define the beginning of the interval and End 
describes its end. The syntax of a time constraint in the design level of SSDs has the following 

Airbag Control 

initialized Ignition-status:bool 
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format (in EBNF): 

constraint ::= time( condition ; condition ; duration) 
condition ::= (port-assignement | abstract-state) [, condition* ] 
port-assignment ::= port portname (== | != | < | > ) value  
abstract-state ::= state statename 
duration ::= [ < | > [ = ] value (microseconds | milliseconds | seconds | minutes ) 

For example, the time requirement "if the airbag gets a blast-signal, it must blast within 5 ms" 
can be translated to  

time(portpres-in==present; portblasted==present; <=5ms) 

It is also possible to mix port assignments and abstract states within the description of the 
start or end point of an interval. Time requirements can depend on preconditions, e.g. the time 
requirement "if the pressure sensors signal a car-crash, the airbag has to blast in 5 ms" might 
be accompanied by another requirement "the airbag must not blast if the ignition is off". In that 
case, abstract states can be used to map those preconditions as well:  

time(portpressure==true, stateign_off; portblast==true; <=5ms) 

Abstract states can also be used to express conditions that must hold for the time the 
predicate has to be valid. Another formal way to describe time requirements is a MSC 
(message sequence charts) that offers a great variety of possibilities to express such 
conditions. Usually these MSCs are translated afterwards to predicates like the ones 
presented in this section. Details on this topic can be found in [Kru00].  

The result of this translation step is a list of abstract states and a set of predicates formulating 
time constraints between port assignments and abstract states.  

2.4.2.2 Translation to STDs 

2.4.2.2.1 Translating States 

To denote a particular state of the system in the design level of state machines, a control state 
of each of its component has to be denoted. However, an abstract state description in the 
SSD level mostly describes only the states of a part of the system and makes no statements 
about the states of other components. Thus for all components, about which no statement is 
made in the abstract states, all control states have to be assumed. This means in particular, 
that one abstract state description is translated to a set of state combinations in the design.  

For example, consider the three components "Airbag Control", "Ignition" and "Child Lock" in 
this chapter’s case study. An abstract state description statex meaning "if ignition on is on and 
child lock is off and pressure is ok" (see Figure 11) specifies exactly one state of the complete 
system. Therefore, there is exactly one design state corresponding to the abstract state 
description: { [ignition.on, childlock.off, airbagcontrol.pressureok] }. See the STD in Figure 12. 
However a description at this level of preciseness is not usual in requirements specifications, 
because they need knowledge about the whole system. 
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Figure 11: Precise State description at requirements level 

 

Figure 12: Mapping to one System State at Design Level 

Most requirements refer to an abstract state of a system. If such an abstract state is given, 
only the precise given state information is used and for the other components, in which the 
states are not limited, every possible state combination is allowed. A state description like 
"The airbag is blasted" will be translated to four corresponding system states in the designed 
system: 

{ [ignition.on, airbagcontrol.blasted, childlock.on]; 
  [ignition.on, airbagcontrol.blasted, childlock.off]; 
  [ignition.off, airbagcontrol.blasted, childlock.on]; 
  [ignition.off, airbagcontrol.blasted, childlock.off] }  See the STD in Figure 14.  

 

Figure 13: Abstract State Description at Requirements Level 
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Figure 14: Mapping to four System States 

In this example it is obvious, which states at design level correspond to an abstract state. 
However states at requirements level and abstract states are often described in an informal 
way. Here it is the task of the requirements engineer and the designer to determine the 
dependencies between the abstract states and the design states. 

2.4.2.2.2 Translating Events 

In the design level of the behavioural view, the notion of events is expressed by signals at 
ports. The signals can be sent by the component or obtained from its environment. Since 
events (e.g. signals) are produced or consumed by a component’s automaton, they can be 
translated into a set of transitions of this automaton. A transition belongs to this set, if and only 
if the specified signal is written to the specified port in its output-patterns (in the case of 
incoming signals) or expected in its input-patterns (in the case of outgoing signals).  

Finally, the source or destination states of these transitions for start or end points of the time 
interval respectively have to be determined (see Figure 15). They are the result sets of the 
translation, which can be handled by the model checking algorithm presented in section 2.6. 
The length of the time interval has to be reduced by the duration of the transitions, which were 
mapped to the event (since the length of the transition path is reduced by these transitions).  

 

Figure 15: Adapting the Time for Model Checking Algotithms 

For example, for the end point of a time interval described as the event "then the airbag has to 
blast" the corresponding signal is present on the port "blast". The affected transition is the 
transition between the states "Ignition On" and "Airbag Blasted". The resulting end state of the 
interval is the source state of this transition (see Figure 16).  
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Figure 16: Mapping of Signals to Transitions and Starting States for Algorithms  

An incoming event, which describes the starting point of a requirement’s time interval, 
specifies an external event, which the component has to handle. If the set of states, which was 
obtained from an event, using the above procedure, is not equal to the set of all control states 
of the component, there are states in which the component cannot react on this event. It has 
to be analysed whether the occurrence of this event-state combination is possible and/or 
acceptable. 

2.4.2.3 Translating Time  

As explained in section 2.2.1.4, AutoFOCUS uses ticks to model time. However, the timing 
conditions of time requirements are usually expressed in conventional time units, like seconds 
or microseconds. The conversion between these two time systems can be performed using 
the following formula. 
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




=

tickoneofduration

time
ticksofnumber , 

where the  . -function returns the least natural number, which is greater or equal than the 

function’s argument. A method for the estimation of the duration of one tick is presented in 
Appendix B. 

As mentioned in section 2.4.2.2.2, if the requirement uses an event to describe the start or 
end point of an interval, the translated interval duration has to be decreased by one tick.  

2.4.2.4 Results of the Translation 

The translation of a time requirement R results in  

• a duration, expressed in ticks, 

• an interval, defined by a set START(R) of tuples of starting control states and a set 
END(R) for tuples of end control states, 

• if the states origin from a requirement event, the signal assignments to corresponding 
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ports are also reported. 

The next section describes how to certify the time behaviour of a component based on this 
input. 

2.5 Component Composition 

This section discusses the derivation of certificates for the whole system from its (certified) 
subcomponents. The certification of “atomic” components is discussed in section 2.6 in detail. 

2.5.1 Certificate of a Component 

The goal of component certification is to guarantee its properties under particular environment 
conditions. Thus a certificate of a component consists of its properties and sets of feasible 
environments, for which these properties can be guaranteed. For the time behaviour, a 
certificate of a property is documented by 

• The property itself (e.g. the non-functional requirement, constraining the execution 
time of some interaction pattern). See section 2.4 on classification and documentation 
of time requirements. 

• The time interval [a,b], which borders the execution times of the component’s 
implementation (of course this interval has to be conform with the requirement’s timing 
condition). 

• The assumptions about the component’s environment, which are necessary, in order 
guarantee the specified time behaviour. These assumptions can be also expressed in 
terms of time interval for the parts of the interaction pattern, described by the 
requirement, in which the environment of the component is involved (e.g. response 
times of the environment). This simple notion of environment assumptions presumes 
the independence of particular parts of an interaction pattern. This means, that the 
response times of calls to the environment can be distributed arbitrary. The only 
constraint is that the accumulated time consumption lies within the interval. 

For a system, composed by a number of certified components, this guarantee can be derived 
from the certificates of its constituents. The components can be composed according to a 
specific composition environment (like in [GZ01]). In a composition environment the way of 
composition and interaction patterns are of interest (see next section). The resulting certificate 
consists again of guaranteed properties and guaranteeing environments for the system. This 
ensures the scalability of the presented approach. 

2.5.2 Reference Architecture 

In order to keep the modularity of the composed system, only a limited number of composition 
and interaction patterns are allowed by the presented approach. Therefore, a layered 
architecture is chosen as a reference. It organizes components of a system to several layers, 
numbered from 0 to n, and allows channels between a pair of components only if the layer 
number of the called component is smaller than the layer number its caller belongs to. 
Communication within the same layer is prohibited also. The system environment builds the 
top level layer (e.g. layer number 0). So in the remainder of this section the term “component” 
stands also for the system environment, which can easily be simulated as a layer 0 
component. 
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2.5.3 Composition Process 

Composing components to a compound component (system) or replacing one component by 
another arises two questions, which have to be answered in order to write out a system 
certificate: 

• Are the assumptions on the component’s environment met? 

• Are the properties, demanded in the system specification fulfilled by the created 
component architecture?  

The new environment sector of a component, which is interesting for the first question, 
consists of its communication partners from the lower layers. At the end of the call the results 
are transmitted back to the caller. The invocation can occur synchronous or asynchronous. 
However it is always synchronised by giving back the invocation results. For the caller 
component there exists an assumption of minimal/maximal response time of its environment. 
This assumption must subsume the sum of corresponding commitments of the called 
components. In other words, the interval in which the sum of response times of the called 
components lies has to be contained in the corresponding interval of the feasible 
environments of the caller component. The distribution of time consumption can be described 
for a pair of synchronous calls as the sum of their invocation time intervals and for 
asynchronous as the interval bounded by the minimal and maximal invocation times. 

The second question from the above list is equal to the certification of the top-level 
environment components, using technique from the previous paragraph. This circumstance is 
explained by the characteristics of the chosen reference architecture: The duration of a 
particular interaction pattern of a component depends only on its communication partners 
from lower levels. As stated in the previous sections, the environment can be seen as one or 
several components. And the requirements on system time behaviour can be assigned to 
these components as the assumed time intervals. 

2.6 Certification of Atomic Components 

There already exist many verification methods for AutoFOCUS components [QUG00]. 
Certification algorithms should be clear to understand, because their purpose is to convince 
certifying institutes of the correctness of components. This section introduces one method 
based on [Wim00]. To enable a time certification that could be explained to others, the 
approach does not analyse the exact execution time but calculates the upper/lower bounds for 
the worst/best case. The verification of the property to be certified is done by a model 
checking algorithm. 

The approach takes as input the time requirements that should be fulfilled. They can either be 
given as direct requirements from the specification or as consequence of the composition 
environment of the architecture.   

The certification of a component is performed in two steps: The AutoFOCUS models are 
translated to a formal language for verification systems and the time properties are formulated 
as temporal logic formulas for the verification system. Finally the model checking algorithms 
check these demanded properties for the system. 

2.6.1 Assumptions and Preconditions 

The algorithm makes some assumptions about the model interpretation, the model design and 
the implementation of the model to deliver a correct result. These assumptions are limiting the 
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implementation and design variety but are still that small, that real world modelling practices 
are possible. In detail the assumptions are the following: 

• Ports are connected to only one channel.  
In AutoFOCUS, outgoing ports in STDs may be connected to several channels. The 
suggested algorithm merges different automata. Therefore it is easier to handle only 
ports, which are connected to only one channel. Diagrams that do not fulfil this 
condition can be transformed by adding new outgoing ports to components, which 
have the same behaviour as the original port. By performing this adaptation no 
information is lost. 

• All transitions need the same time to switch (global tick). 
This algorithm assumes that there exists a global timer that synchronizes the 
transitions. This assumption makes a simple merge of components possible, because 
of their synchronic execution. 

2.6.2 Starting Situation 

The input for the algorithm consists of two parts. One part is a set of assumptions  {a, b, …} 
about the calculation time and response time of the environment. In this approach the 
behaviour of the environment has to be described with automata which interact with the given 
component. This model of the environment forces the developer to think about things like user 
behaviour as uncertain factors for a certification. The automata for the environment are 
treated by the algorithm like the other components to be certified. 

The second part of the input given to the algorithm is the translated requirement. This part 
consists of two sets defining the beginning and ending states for the requirement and of a 
time span, expressed in ticks. Additionally the valuation of the input ports can be given, if e.g. 
an event is the starting point of requirement’s interval. 

2.6.3 Steps 

This section outlines the execution of the model checking algorithm.  

The first step is to build one big component with one automaton that represents the behaviour 
of the system and the environment. This means a big component is build that simulates a 
closed world containing the behaviour of the component to be certified and of the behaviour 
described in the certificate for the environment. 

In the second step, the merged automaton is converted into a so called Kripke structure 
[Cla01] (or it’s more convenient representation by OBDDs2). In a simplified way, a Kripke 
structure describes all possible execution traces of an automaton. The translation from an 
AutoFOCUS automaton to an equivalent Kripke structure is described in [Wim00]. 

The last step is the application of a model checker. The Kripke structure, described in the 
previous section, serves as an input of a (symbolic) model checking algorithm. Another input 
is a time property, which has to be checked for the system being certified. In order to model 
check these properties, they have to be expressed by means of temporal logic. A special 
derivate of CTL3, specially suited for this purpose is real time CTL (RTCTL), presented in 

                                                  
2 Ordered Binary Decision Diagrams 
3 Computation Tree Logic 
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[Cla01]. 

Using RTCTL allows statements about the length of an execution path and thus about the 
number of ticks a system will need to reply on a request. The time between two ticks has to be 
offered by the developers. Appendix B gives a specific estimation for AutoFOCUS Systems. 

2.7 Conclusion 

This chapter presents an approach for the certification of time behaviour of components that 
are developed with AutoFOCUS: At first, it describes how the requirements are translated in 
terms of a AutoFOCUS model, and then it shows how they are checked in a composition 
environment. 

We would like to thank Oscar Slotosch for his comments and suggestions. 
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3 Method for Component Certification on Reusability 
For Jabil Hasselt, a first step towards and a prerequisite for component certification is the use 
of development processes and techniques which facilitate component reusability and the 
activities for ensuring this reusability. 

In the context of EMPRESS, Jabil Circuit Hasselt has improved and tailored its development 
processes to support the development of reusable components as a first essential step 
towards component certification.  

3.1 Context   

Needs  

One of the teams within the software development group of Jabil Hasselt is the Diagnostic 
Software (DSW) team. The task of the DSW team of Jabil Hasselt is to develop diagnostic 
software for consumer electronics products. 

The purpose of diagnostic software (DSW) is performing diagnostic testing mainly on 
hardware and on PCB board interconnection of these products. For each product, three 
groups of diagnostic tests (diagnostic software) have to be developed:  

1. tests to be performed during development and during production in the factory 

2. tests to be performed in the field by service organisations  

3. tests to be performed in the field by end users. 

For each newly developed product at Jabil Hasselt, qualitative diagnostic software has to be 
developed. 

The DSW projects have to cope with several problems: 

Firstly, the development of DSW has to be done within the limited time frames of the 
development projects. Moreover, it is essential that the DSW is available as early as possible 
in the development of a new product. Thus timing constraints are especially for DSW very 
strong.  

And besides this, in the domain of consumer electronic products, the complexity of the 
product functionalities is always growing.  

To face these problems -- the growing complexity and the high time pressure -- it is essential 
for the diagnostic software team to decrease the development times. 

On the other hand, DSW systems in general consist of many, relatively small but similar 
components. 

In this context and as a possible answer to these problems, the team started to investigate 
possibilities for development and certification of reusable DSW components. How to ensure 
reusability of components is a major issue in the area of reusable component development. 
For Jabil Hasselt, the starting point of the investigation was that the possibility of component 
certification depends highly on the way the components are developed. Development 
processes and techniques supporting reusability, will also facilitate component certification. 
With this background, Jabil concentrated in this investigation on process support for reusable 
component development as an essential step towards component certification. 

Starting Point  
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Jabil Hasselt has already built up experience in the area of the process development. We 
refer here especially to the work of Jabil (previously as Philips Hasselt) in the context of the 
ITEA @Terminals project [Ter02]. 

The Jabil activities for T3.7 build further upon the Jabil results of ITEA @Terminals: the 
processes and techniques developed in this project have been tailored and improved towards 
the needs of  reusable component development and component certification. 

3.2 Established processes and techniques to be tailored or improved 

In a first attempt to develop reusable DSW components, the DSW team worked according to 
the established processes and techniques. After these first attempts to develop reusable 
components, it turned out that several processes had to be tailored or improved in order to 
support reusable component development and component certification. 

As already mentioned, a DSW system usually consists of a large number of components. In 
general these components have rather limited development times and are similar in different 
DSW systems. On the other hand, the established processes and techniques support 
especially the development of new software systems, consisting of a limited number of 
components, developed from scratch. 

It turned out that with the usual ways of work large development times are especially 
consumed by the module development and the module test activities. As In general the 
requirements for similar modules in new DSW systems do not change, reusability would 
decrease development time. But this reusability turned out to be poor with the existing 
processes. Since the processes were not set-up to include reusability, and due to the large 
number of components, developers did not concern about this issue. This resulted in a variety 
of modules engineered according to different developer’s styles. Even system related 
software issues were included in these modules. Reuse of modules developed with this way-
of-work in new systems was very difficult.  

Another conclusion was that with the usual processes, too much major software errors are 
discovered at the end-phase of the DSW, during the release management phase. This was a 
serious risk for the project planning. Reducing the time for release management was an 
important aim. 

Processes supporting reusable component development and component certification could 
save much time and had to be investigated. 

After these first experiences, the following processes have been selected for improvement  or 
tailoring: 

1. Requirements engineering:  

Reuse of requirements is not supported by the existing processes. It is essential that from 
the beginning of the project, in the requirements phase reusable requirements are 
identified.  

2. Architecture: assigning customer requirements to an architecture and architectural 
modules and a software system connecting the modules; definition of the software 
environment and environment related issues (e.g. choice of operating system and 
software operating conditions) interaction with hardware platform defined by used 
components and hardware-software interface.  

With the established processes too much architecture-related tasks are mixed up with the 
development and the integration of the separate modules. For reusable component 
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(module) development, it is essential that module development is independent from 
system creation and integration aspects. 

3. Module development: the development - design and implementation - of a SW module.  

With the established processes, too much time is spent on module development. Main 
reason is that the module developers’ responsibilities are not clear and that too much time 
needs to be spent to system related problems  

4. Module testing: test if the module functionality matches the customer requirements. This 
is done on module level only; the system environment does not yet exist. Here it is only 
possible to check if the information passed to the module (data input) is handled correctly 
by verifying the module response (data output).  Usually this means interaction with other 
non-existing modules which need to be stubbed. 

As holds for module development and for the same reasons, with the established 
processes, to much time is spent on module testing 

5. Integration and integration testing: the system integrating all developed modules is 
created. Integration testing consists of tests to verify that data is passed properly between 
the system and the modules and between modules themselves. 

With the established processes, the time for integration and integration testing was very 
limited and only a few errors could be discovered in this phase. Main reason was that too 
much time was spent to the module development and module test phases while the 
release date is always a fixed deadline.  

6. Release management: this process usually consists of two test phases; the -test and 
WKH� -WHVW��7KH� -test verifies the customer requirements on “white-ER[´�DSSURDFK��7KH� -
test is a “black-ER[´�DSSURDFK��:KLOH� -test is executed with in depth knowledge of the 
VRIWZDUH�V\VWHP��IRFXVVLQJ�RQ�VRIWZDUH�FULWLFDO�LVVXHV�� -testing aims at verification from 
a customer point of view. It is an in depth test to verify if the system will pass the 
customer’s usage of the product. Errors found during these two test phases are handled 
by a software-fault-report database and a repair process. After the product has an 
acceptable status, it will be released.  

The main problem with the established processes was that too much major errors are 
discovered too late, in the release phase. These errors should be discovered earlier in 
integration phase.  

3.3 Results: Tailored and Improved Processes 

3.3.1 Requirements Engineering 

As mentioned before, similar software modules of different DSW systems usually have similar 
requirements. The major improvement here was the assignment of a dedicated (DSW-) 
software architect. This architect is responsible for gathering requirements for a DSW system 
and for the definition of the architecture. He/she decides what can be reused and what needs 
to be newly developed in the development of a new DSW system.  

A DSW system consists of several DSW modules which can be divided in three categories: 

1. the driver software, which usually is externally delivered and included in the system; 

2. the system SW modules, containing the SW defining the system: i.e. user interface 
definition, hardware-software interface tables and system specific diagnostic mode tables, 
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3. the software modules performing the test requirements as defined by the customer. 
These modules should be independent from any software system and free from driver 
dependent references and hardware related references. 

The goal is to develop reusable software for the 3rd category of modules so that only the 
system SW and in some cases the driver SW have to be re-developed. These modules 
should be developed and tested once at module level, and further proofed to be fault-free 
during integration and integration test phase. 

This way of work, existing requirements can just be integrated in the new system, bypassing 
their module development and test effort.  

Of course, when new (non-yet-existing) test requirements are asked then these modules need 
to be re-developed as well. 

3.3.2 Architecture 

The system architecture process was improved by adding a dedicated test & integration 
architect. Together with the software architect, the test and integration architect forms the 
architecture team.  

As in requirements engineering is described, the architect is responsible for defining the 
system architecture. The test & integration architect closely monitors these activities and is 
responsible for the creation of the system by integration of DSW modules and drivers in this 
system. He is also responsible for the integration test and release management are 
responsibilities. 

The goal is to have a dedicated person for the creation and release of a DSW system.  

By assigning the responsibilities of system creation and integration to dedicated architects, the 
software engineers only have to concern with the development and test of software modules. 
This is an important step towards a module-based development where reusability will be the 
main focus. 

3.3.3 Module Development 

Module development was improved by:  

• assigning a software engineer as responsible for the complete development of a 
module; he/she  only needs to focus on the module, not on system aspects.  

• the creation of a template supporting the engineer to work towards reusable and 
certified modules, (see section 3.4.) 

3.3.4 Module Testing 

Module testing was improved by making the software engineer responsible for implementing 
and testing the module test requirements as well. The template (see 3.4) guides also the 
module test activities. 

After successful execution of these tests, the module is ready to be integrated in a DSW 
system and the module will be passed to the test & integration architect for integration in a 
system. 
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3.3.5 Integration/Integration Testing 

The integration and integration testing is done by the test & integration architect. 

• Integration: modules are integrated a DSW system. This system is created by the 
test & Integration architect. The system should be mature enough for the testing of 
modules in a system environment.  

• Integration test: this test will be done when a module is integrated. This is a test to 
ensure that the module interacts correctly with other modules and the system on the 
DSW hardware platform. This way after every time a module(s) is integrated a 
repeated incremental test of the system is done to decrease the number of failures to 
be found in release management significantly. Integration tests are carried out by the 
development engineers and are monitored by the test & integration architect. After 
integration test the status of the integrated modules is reported to the system 
architect. If the module passed this phase, the system architect will certify this DSW 
module or component as reusable and fault free.  

Integration/integration testing should result in a yes/no for the certification of a component - in 
this case a SW module.   

With the improved way of work for the previous phases (described in sections 3.3.1 -3.3.4) 
module related errors should be discovered during these phases. During system integration 
and integration testing it should proved that a component works well for all relevant DSW 
systems. To support this last step towards component certification, two major improvements 
have been defined for the integration process: 

• Systems are tested in an incremental way. Failures can be found very early.  

• Modules are tested in several systems at the same time. This is possible for DSW 
because DSW systems are usually created concurrent for different projects. This is 
an important test for the effective reusability of the component and as such a step 
forward towards component certification. 

An important effect of this way of work is also that it eliminates the need for an -test at the 
end of the DSW project. 

3.3.6 Release Management 

As stated before the Integration/Integration testing has been extended to a major phase in the 
development of a DSW system(s). The consequence is that there is no need for an -test. 
What remains is the official release of the DSW system and hand over to the Quality 
'HSDUWPHQW�IRU�H[WHQVLYH� -testing. 

7KH�H[SHFWDWLRQ� LV� WKDW� WKH�QXPEHU�RI� IDLOXUHV� IRXQG� LQ� -test will decrease and the failures 
related to module errors will also decrease. 

3.3.7 DSW Way-Of-Work document 

The improvements listed in previous sections have been described in a “DSW Way of Work 
document” [Fel03]. This document describes in detail what each team member should do in 
the creation of a successful DSW system. The focus is on the module development, module 
test, integration and integration testing phases, as these phases are the key phases in 
successful development of reusable modules. The document especially highlights the 
differences with the established processes and techniques, it can be considered as a tailored 
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process description. 

3.4 Results: Template  

To support the software engineer in the creation of software modules a template has been 
created. This template guides the engineer through the process of module development, while 
aiming at reusable and certified modules for DSW. The module document is to be reviewed 
by the architecture team before allowing the module to be integrated in any system. 

The template consists of the following chapters: 

• Requirements: an overview of the customer requiments fulfilled by this module. 

• Overview of Module 

o Requirement identification: each requirement gets a unique identifier. This 
supports the system architect to have an overview of all requirements in a 
module. This way it is made easier to implement  new DSW systems to see 
what which requirements are available and what needs to be newly created. 

o Design of module: the architect of the module consisting of conceptual 
architecture, execution architecture, interconnection - and code architecture. 
Also complex algorithims are described here and they are proven by 
predicates. 

o est specifications of module: the set of testcases defined to meet each 
requirement Important is that the requirements are tested not in the actual 
DSW system but in a development system (on PC with stubs) to test 
independently of hardware platforms - for reusability. 

o Test results of module: a summary of test results, also remaining compilation 
warnings, static code analyser results and a summary of remaing 
recommendations and conclusions;  

o metrics: metrics on code like size, number of code lines. 

3.5 Future Steps 

Next step is that the proposed improvements will be tried out in multiple DSW projects first, 
followed by other embedded SW development projects.  When the practical use turns out to 
be satisfactory, the improvements will gradually be become part of the standard processes for 
component-based development in Jabil. 

With the described work, Jabil Hasselt intends to gain essential knowledge on component 
reusability and component certification, and to move an important step forward in this 
direction. 
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4 Conclusion 
This document presented two examples for different tasks in the field of certification. One 
example is taken from the certification of time and the other one considers the certification of 
reusability. The first approach, dealing with time suggests a model-based development with 
automatic code generation. The models can be verified against time constraints. The 
approach is mainly focused on the certification technique and not on task to be performed in 
respect to project management and the software engineering process. 

The second approach mainly deals with the process and the roles to enable and use a 
certification of reusability. The application of templates as rules for component design and the 
control from the dedicated role “test & integration architect” improve the implementation of 
certification activities in a software engineering process.  

The process and role concept presented in the second example can be also used to integrate 
the certification technique of the first example. The observation of the developed components 
as well as the control of the composition mechanisms can be performed by the architecture 
group in the process. 
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5 Appendix 

Appendix A Autofocus Data Types 
This appendix shows the operators for data types of as well as a declaration of functional data 
types for AutoFOCUS. This appendix is relevant for the estimation of a tick duration that is 
described in Appendix B. 

Operator Symbol 

equality = 

inequality != 

receive ? 

send ! 

implication => 

biimplication <=> 

disjunction || 

conjunction && 

subtraction - 

addition + 

multiplication * 

division / 

greater > 

greater/equal >= 

less < 

less/equal <= 

Table 1: Binary Operators in QuestF 

 

operator symbol 

Negation not 

minus sign - 

plus sign + 

Table 2: Unary Operators in QuestF 

 

AutoFOCUS data type declarations can contain user-defined functions. A user-defined 
function can be specified using different alternatives and pattern matching. Constants and 
functions can be declared in the following way: 

decl ::= const id = qterm ; | fun qterm fundecls* ; 
fundecls ::= I qterm 
 

The “qterm” has to have the form “f(qterm) = qterm”, where f is the defined function, and in the 
left term only constructors and variables are allowed: 

fun emptyChannel(NoVal) = true 
   | emptyChannel(Val(x)) = false; 

Appendix B Estimation of Tick Duration 
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This section deals with the estimation of time consumption for AutoFOCUS systems. The 
constraints of time requirements are expressed in continuous units like seconds, 
microseconds etc. Section 2.2.1.4 pointed out that the time semantic of AutoFOCUS is based 
on a discrete notion of time, using the concept of ticks. In section 2.4.2.3 timing conditions of 
requirements are translated into the conditions on amounts of ticks. For this purpose the 
duration of one tick has to be estimated. Section B.2 gives this claimed estimation. Formulas 
for the time behaviour of different parts of AutoFOCUS models, needed for the calculation of 
tick duration, are given in a top-down manner in succeeding sections. But first some 
preliminary work on prioritization of transitions is made in section B.1. This prioritization will 
aid the estimations from the later sections. 

B.1 Prioritization of Transitions 

Every state S  has a set of outgoing transitions { })()1( ,, n
SSS ttTRANS K= , with 0>n . If the 

automaton gets in the state S , it examines each of its transitions until it finds one of them, 
which can be executed. The next state of the automaton is the destination of the executed 
transition. The transitions of S  are examined in a certain order, according to the transitions’ 
priorities. 

Every transition is mapped to the sequence of priorities ( ))()1( ,, m
SSS ppPRIO K=  using the 

function SSS PRIOTRANSprio →: . This function defines a partition of the transition set 

STRANS  to m  priority classes ( ))()1( ,, m
SS PCPC K  with { })()( )(| i

SSSS
i

S ptpriotPC ==  for all 

mi ≤≤1 . The transition )(i
St  will be examined before the transition )(i

St  if 

)()( )()( j
SS

i
SS tpriotprio < . In the case the priorities are equal, the selection occurs non-

deterministic. The lowest priority )(m
Sp  is reserved for a so called idle transition idle

St , which is 

executed every time, when no other transition can be fired. As pointed out in section 0, this 
transition is a self-loop, e.g. its source and destination are equal and it doesn’t cause any 
changes on the automaton or on the component’s environment. 

Using the prioritization, the estimation of execution time can be easily adapted for different 
deployment types. For example in the case of code generation for a real-time embedded 
system, the examination of transitions will probably occur in a sequential, deterministic way. 
This fact can be mirrored by defining one priority class for every state’s transition and ordering 
them according to the examination sequence. Another extreme is the fully non-deterministic 
choice of a transition to be examined. In this case there will be two priority classes, one for the 
idle self-loop (low) and another one for other transitions (high). 

B.2 Estimation of a Tick Duration 

The length of one tick for a given AutoFOCUS-system is defined as the time-span, in which 
every system’s component can accomplish (e.g. start and finish) its execution step and its 
produced outputs are transported through channels to their consumers. This tick semantic, 
introduced in section 2.2.1.4, has to be implemented correctly, when deploying a modelled 
system to a specific platform. This section describes methods for the estimation of the tick 
duration for a certain class of deployment architectures. 

In this section it will be assumed, that the model is implemented in a conventional 
programming language (e.g. ANSI C) and the execution of one automaton occurs strictly 
sequential and deterministic. The execution of the individual components can be 
accomplished in parallel as well as in sequential manner, depending on the underlying 
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deployment architecture. However the assumption for this deliverable is that one component 
is completely executed by one processor. 

For a given system SYS  consisting of a set of components { }nSYS CCCOMP ,,1 K=  with the 

associated set of automata { }SYSSYS COMPCAC ∈=Α |. , the following deployment 

architecture class ARCH  is treated in this section:  

• The system is deployed to a set of processing units { }mARCH PUPUPU ,,1 K= , these 

can be processors or network nodes. This is done by a function 

ARCHSYS PUCOMPdeploy →: . This function is total and surjective, e.g. it deploys 

every component to exactly one processing unit, and one processing unit can get more 
than one component. 

• Channels are deployed to communication paths and protocols, which are available by 
and reasonable for the chosen architecture. This can be a special networking protocol 
in the case of a network deployment, semaphores and shared memory structures in 
multi-processor systems, or global variables for sequential execution on one 
processor. There is also a certain time demand for the synchronization between 
processing units in order to properly implement the tick semantic. The time needed for 
communication and synchronization is represented by a factor commT , which has to be 

calculated according to the chosen communication medias and protocols. 

The estimation of the duration of one tick for the described class of systems is 

commPU
PUPU

tick TTT
ARCH

+=
∈

)(max , i.e. it is the maximum of one computation step in a computing 

unit plus the transport and synchronization time. 

It is assumed, that every processing unit executes its components in a deterministic 
sequential order. So its tick duration can be estimated as comm

PUdeployC

C
tickPU TTT += ∑

−∈ )(1

, where 

SYSCOMP
ARCHPUdeploy ℘→− :1  is the reverse deployment function, which returns for every 

processing unit a set of components deployed to it. In words, the tick duration can be 
estimated as a sum of ticks’ duration of every deployed component plus the synchronization 
and transport time. 

The estimation of duration of one tick for one component C
tickT  presented here aims to certify a 

certain time behaviour of the component C , as described in section Error! Reference 
source not found.. This fact motivates to find a worst-case for the time behaviour. A worst-
case, however, depends on the type of the property, which has to be certified. For upper-
bounds the highest tick duration has to be considered, for lower-bounds the lowest one. 

• In the case of an upper-bound constraint, the tick duration of an automaton A  (and its 
parent component C ) can be estimated using the following formula: 

)(max t
TRANSt

A
C

tick TTT
CA

C ∈
== , e.g. the tick duration is equal to the slowest execution of 

automaton’s transition. 

• For lower-bound constraints, the tick duration can be estimated by: 
)(min t

TRANSt
A

C
tick TTT

idle
CA

C τ−∈
== , with }|{

CA
idle
S

idle STATESt ∈=τ , e.g. the tick duration is 

equal to the quickest execution of component’s transition, which is not an idle self-
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loop.  

An approach for the estimation of a transition execution time tT  is discussed in the following 

section. 

B.3 Duration of Transition Steps 

In order to estimate the execution time of one transition step, the syntactic and semantic 
structure of transitions has to be examined. Every transition St  in AutoFOCUS has the 

following form: 

transition ::= [ precondition ] : [ input_patterns ] : [ output_patterns ] : [ actions ] 

The semantic of such a transition is: if the input patterns do match and the precondition is 
true, then the output patterns evaluation and actions can be performed. So the execution of 
one transition can be subdivided into examination (precondition + input pattern) and firing 
(output pattern + actions). The overall execution time of a transition St  is 

SSS ttt FTETT += , 

where SS

S

t
patterninput

t
onpreconditit TTET _+=  and SS

S

t
actions

t
patternoutputt TTFT += _ . This estimation of 

examination time is a simplification, because in a case of pattern mismatch in one of the input 
patterns, the precondition has not to be examined and, further on, the transition will not be 
fired, if the precondition is not true or input patterns mismatch. A more elaborate estimation of 
execution time for transitions will be discussed next. 

For every transition step 1+→ i

t

i SS
iS

 (read: the step from state iS  to state 1+iS  using the 

transition 
iSt ) the execution time is defined as  

iS

iSiS

j
iS

i

iSt

i

t
tprioj

PC
SS

FTETT +









= ∑

≤→ + )(

)(

1

 (1), 

with ∑
∈

=
)(

)(

j
iS

j
iS

PCt
tPC

ETET , i.e. the execution time is the sum of all examination times of all 

transitions with a priority greater or equal than the priority of 
iSt  plus the firing time of 

iSt  itself. 

This estimation of execution time is a worst case, because it assumes that all transitions with 
the same priority as 

iSt  (e.g. all 
iiii SS

j
SS ttPCt ≠∧∈ ˆˆ )( , with jtprio

ii SS =)( ) are examined 

afore. 

In order to get a better estimation for the lower-bound constraints discussed in the previous 
section, the following formula can be used: 

iS

iSiS

j
iS

i

iSt

i

t
tprioj

PC
SS

TETT +









= ∑

<→ + )(

)(

1

 (2), 

e.g. it is now assumed, that 
iSt  is examined as the first transition from its priority class. 

However, this estimation doesn’t change anything with the assumptions about the deployment 
architecture made in the last section. Section Error! Reference source not found. mentions, 
that if the automata are executed sequentially and deterministic, the priority classes will be of 
the size one. So the two estimations (1) and (2) become equal in this case. Never the less, for 
other architecture classes, this estimation for lower-bound constraints could be useful. 
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B.4 Evaluation Time of Transition Expressions 

This section deals with the duration estimation for the evaluation of an expression which 
annotates one transition. This estimation focuses on each of the four parts of this annotation 
(precondition, input pattern, output pattern and actions). These four constituents of a transition 
were introduced in section 0. They are formulated as QuestF-terms (see section 2.2.1.3 for 
details). In the following, their syntax in EBNF and semantic will be presented and formulas for 
estimating their evaluation time will be discussed. 

• input_patterns ::= input_port_id ? pattern [ ; input_patterns ] 

The evaluation time of a list of input pattern is ( )∑ += pattern
recieve

binoptypepatterninput TTT _ , e.g. the 

sum of receives and pattern matching operations for every member of the list. [Wim00] 
describes a static method for conversion of pattern terms into logical formulas. Using this 
method, the estimation above can be generalized to 

( )∑ += qterm
recieve

binoptypepatterninput TTT _ .  

These estimations assume a strict implementation language, i.e. ignore the fact that the 
evaluation of input patterns can be aborted as the first pattern mismatch is found.  

• precondition ::= boolean_qterm 

• output_patterns ::= output_port_id ! qterm [ ; output_patterns ] 

The evaluation time of a list of output pattern is ( )∑ += qterm
send

binoptypepatternoutput TTT _ , e.g. the 

sum of send operations and evaluations of pattern expressions for every member of the 
list. 

• actions ::= local_variable_id = qterm [ ; actions ] 

The evaluation time of a list of actions is ( )∑ += qtermassignactions TTT , e.g. the sum of 

assignments and evaluations of right-hand expressions for every member of the list. 

As aforementioned, the execution time of one transition is at most the sum of the evaluation 
time of its parts. The estimation of evaluation time for arbitrary QuestF-expressions ( qtermT ) is 

discussed in the next section. 

B.5 Evaluation Time of QuestF-Terms 

According to the syntax of QuestF presented in section 2.2.1.3, the evaluation time of a 
QuestF-term qtermT  can be estimated depending on its type: 

• ( )branchelse
qterm

branchthen
qterm

cond
qterm

if
qterm TTTT __ ,max+=  for the if-expression in the case of the 

upper-bound estimation and ( )branchelse
qterm

branchthen
qterm

cond
qterm

if
qterm TTTT __ ,min+=  for the lower-

bound. 

• 21 op
qtermbinoptype

op
qterm

binop
qterm TTTT ++=  for binary operations. 

• op
qtermunoptype

unop
qterm TTT +=  for unary operations. 

• User defined functions and data types can be statically eliminated (e.g. expressed in 
term of the standard QuestF-syntax) using the techniques presented in [Wim00]. 
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The estimation of unary and binary QuestF-term-operations is accomplished in dependency to 
the characteristic of the chosen platform and hardware architecture. Some of them are listed 
below: 

• Size of registers and size of data types. The proportion between these two factors 
influences the execution of assembler operations. If the maximum length of data types 
(in bytes) defined in the AutoFOCUS-system is greater than the capacity of the 
processor’s registers, additional time-consuming arrangements must be taken. 

• Type of used assembler, e.g. the number of operands (3/2/1/0) as well as the allowed 
addressing types (direct/indirect/stack pointer/index). These factors affect the 
execution time of operations and influence the number of needed read and write 
operations, which are discussed below. 

• The duration and number of read and write operations are important factors for 
evaluation time. They correlate with the following specifics of the deployment 
architecture: 

o Number and size of registers affects the amount of write and read operations 
during the evaluation. In pure accumulator architectures, the intermediate 
results have to be written out to the memory every time they were calculated. 

o The existence of caches and number of cache-levels determines the duration 
of read and write processes. In the average case, they serve as a speed-up for 
these operations. However, in the worst case, the fetch operations can take 
long. I.e. if the needed value is not in the cache, the whole cache site has to be 
loaded. If the cache is full, another site has to be swapped out afore. For this 
reason many manufactures of real-time embedded hardware/software systems 
don’t use caching in their architectures. 

o Optimizing compilers are trying to reduce the amount of write/read operations 
by (semantic preserving) code transformations. 

• Existence and number of pipelines. By using pipelines a certain degree of parallel 
execution is achieved by processors. This technique has also a worst case behaviour, 
which can be insufficient for real-time applications. 

The presented certification approach expects a set of constant evaluation times for all 
primitive QuestF operations for every target platform. These constants serve as parameters of 
the estimation method presented in this section. 
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