
Combining Structural and Functional Test Case Generation

Christian Pfaller, Markus Pister

Lehrstuhl Informatik IV – Software & Systems Engineering
Technische Universität München, 85748 Garching

pfaller, pister@in.tum.de

Abstract: Model-based testing uses a test model which defines in general an infinite
set of correct system runs. The task for the test case generator is to select an ”interest-
ing” subset of all the traces. The way this subset is chosen is defined by the test case
specification. Two types are widely used: structural or functional test case specifica-
tions. The first is given in terms over the model elements, the later is derived from the
underlying system requirements. Whereas structural criteria are easily applicable to
any model and support fully automation, functional specifications need more manual
definition but are closer to the users’ requirements.

In this paper we propose a method which combines advantages of both: struc-
tural criteria and functional test case specification. Especially it supports automation
in large parts but focuses on the users’ requirements as well. Furthermore the method
provides an easy and flexible adjustment to project-specific needs. By setting up pa-
rameters the tester is able to influence the functional focus of the generated tests.

Key ideas of the method are a classification and weighting of requirements and the
selection of test cases only from parts of the original model: For every requirement
a sub-model is selected that is defined by the requirement and the weighting of the
requirements’ class.

1 Introduction

Model-based test case generation has a high potential to significantly reduce the costs
of testing activities in software development. In the field of (embedded) reactive sys-
tems, where a model of the system under test (SUT) can be described by a state machine,
model-based test case generation has already shown its practical feasibility, for example
in [Pr05]. A model of the SUT is used to retrieve a set of test cases according to a test
case specification. In most cases therefore structural coverage criteria are used, as in the
techniques described in [HMR04, Pr04]. Reactive systems process a potentially infinite
sequence of inputs. Thus the set of all possible input sequences is infinite. The generation
of test cases means to select ”interesting” test cases from the set of all possible sequences.
A test case specification is used to define the test cases to be selected. In general the model
and the test case specification may be regarded as the inputs of a test case generator. Test
case specifications may be structural, stochastic or functional. Structural test case specifi-
cations use coverage criteria like state coverage, condition coverage, or MC/DC coverage
[Pr03, RH03]. Their advantage is the support for fully automation and the consideration of



the whole model for testing. However, structural criteria do not refer to the requirements
and provide hardly any flexibility for specific adjustments in projects. Functional test case
specifications, which are manually defined according to the requirements can be adjusted
to specific projects. Their drawback is the high effort for formulation and the danger of
not considering the interdependencies between requirements which occur in the model.

1.1 Problem and Contribution

To ensure a certain level of software quality the various stakeholders—especially the
clients—usually require to provide suitable tests for every single requirement they had
stated. A trivial fulfillment of ”one test case per requirement” should be avoided, since
crucial execution paths resulting from (not explicitly stated) combinations of requirements
will likely be omitted. The manual definition of test cases is usually a laborious task, also
when models are used for test case generation but functional test case specification must
be defined. On the other hand fully automated test case generation which exploit just the
structure of a model is hardly to adjust to requirements and project specific settings.

In this paper we propose a method which supports a high degree of automated test case
generation that is guided by the explicitly defined users’ requirements. The test case gen-
eration is easily adjustable to the project specific settings and traceability from test cases
to the original requirements is given. Furthermore the proposed method pays special at-
tention for testing interdependencies between different requirements and has the ability to
distinguish between requirements which should be focused more or less during testing.
Finally the test method leads to fulfill a higher requirements coverage.

1.2 Related Work

Test case generation by means of structural coverage criteria is described in [HMR04,
Pr03, Pr04, RH03]. Unlike these approaches the presented work not only bases on the
structure of a test model or test object respectively but mainly on the specified require-
ments. In [GHN93] test cases are derived directly from message sequence charts. In
contrast, this work focuses on the integration afore mentioned model-based generation
techniques together with a requirements-based test case specification. In [GH99] test
cases are generated from SCR specifications but in contrast to the presented work here
this approach requires that every detail of functionality of interest is explicitly stated as
a requirement. In [OB88] category partition is proposed, a systematic way to define test
scripts based on equivalence classes which are derived from requirements. A comparison
of many requirements based testing methods was done in [DM03], none of these uses a
model were all requirements are integrated. Similar to [HDW04] we see the need for cov-
erage criteria based on requirements. To the authors knowledge not much work is done yet
on requirements-based coverage criteria for model based testing. In [Pf06] a development
method is outlined in which requirements (there called services) shall be used as test case



WindowControl

switch

pos

error

motor

Automatic
window

Figure 1: Interfaces of WindowControl example

specification.

1.3 Outline

In the next section we introduce a running example which will be used throughout the pa-
per. In section 3 the specification of requirements is described whereas section 4 addresses
the completion of the specification by building the behavior model. The test case genera-
tion method is presented in section 5 and section 6 compares a classical test method against
results of our new method. Finally we state our conclusion and outline future work.

2 Running Example

As a running example we use a simple control system for an automatic window of a car.
Figure 1 illustrates the interfaces of WindowControl to its environment.

We assume that the system boundaries as well as the input and output ports of the sys-
tem were already identified: WindowControl has two inputs, the switch signal where the
command for opening or closing the window occurs and the pos signal which signals the
position of the window (at top, bottom or somewhere in between) or indicates if the win-
dow is currently moving. The outputs are: motor which controls the motor of the automatic
window and error which signals a possible error for logging in the diagnostics memory of
the car. The possible signals at these ports are defined by the corresponding value set, ⊥
is used to indicate the absence of the respective signal:

SWITCH := {open, close,⊥}
POS := {top, bottom,middle, moving}

MOTOR := {down, up, stop}
ERROR := {err,⊥}

The example bases on the window control system, described in the specification [HP02],



which is a representative for requirements document in the automotive industry today.

3 Analyzing the Requirements

3.1 Informal Requirements

Even though there are many precise notions—like temporal logic—the industry still uses
informal, textual descriptions for requirements specification. The challenge is to bridge
the gap between developers and designers prefering a more formal specification and the
various stakeholders of a system only understanding the informal (and often imprecise)
statements. For the WindowControl example we can identify the following informal re-
quirements:

• If the switch is in position open, the window moves down (R1). The movement
stops if
– no signal from the switch is sent anymore (R2)
– or the window is in the bottom position (R3)
– or the switch signal occurs for opening the window (R4)
– or the window does not send the movement signal anymore, in this case an error
will be logged (R5)

• If the switch is in position up, the window moves up (R6). The movement stops if
– no signal from the switch is sent anymore (R7)
– or the window is in the top position (R8)
– or the switch signal occurs for moving the window down (R9)
– or the window does not send the movement signal anymore, in this case an error
will be logged (R10)

Note that these requirements are not complete: For example they do not state what should
happen if the switch is pressed to open the window but the window is already fully open.
Also the original requirements document [HP02] does not describe the situation.

3.2 Formal Scenario Specification

Informal requirements are in most cases the only way to communicate a specification to
all stakeholders. We need a formal representation of the requirements to support more
automation in requirements based testing, too. The connection between informal and for-
mal representation of a requirement should be easily visible for tracing and validating
purposes. Thus the aim is to use a simple language which allows non-computer-scientist
and non-mathematicians to validate the correctness of the formal specification. To achieve
this we use input/output scenarios which state typical example system runs for every re-
quirement. Each scenario is just a sequence of pairs of inputs and outputs at the systems’



interface. (Here input or output action means the full assignment of values to all input or
output ports of the system. Thus an action is usually a vector of simple values.) Formally
for a set of input actions I , a set of output actions O and n ∈ IN with n ≥ 0, the set

TRACES I,O = {〈(i0, o0), . . . (in, on)〉 |∀k, 0 ≤ k ≤ n : ik ∈ I ∧ ok ∈ O}

denotes the set of all possible sequences over the input alphabet I and the output alphabet
O. The WindowControl example holds ik ∈ SWITCH × POS and ok ∈ MOTOR ×
ERROR. By a finite set REQ ⊂ TRACES the set of requirement scenarios is denoted.
Every req ∈ REQ states an example of a typical and correct system run for a informal
stated functional requirement. In the example above a formal scenario for requirement R1
could be:

R1 :

〈((
open

middle

)
,

(
down
⊥

))
︸ ︷︷ ︸

step0

,

((
open

moving

)
,

(
down
⊥

))
︸ ︷︷ ︸

step1

〉

3.3 Pre-Conditon

The notation of scenarios assumes that every scenario starts in a defined initial state of the
system. Usually not all requirements are described from the initial state on and only hold
if some specific actions have been executed before. For example the WindowControl re-
quirements R2 – R5 assume that the window is moving down. Thus the actions performed
to move the window down are called the pre-condition of the requirement and a scenario
for a requirement consists of a (possibly empty) pre-condition and a main part. Only the
main part of a scenario reflects the rationale behind a requirement. In most cases the pre-
condition is defined as a separate requirement on its own. In table 1 the scenarios for the
requirements considered are stated. There actions in brackets denote the pre-condition.

3.4 Classification of Requirements

The proposed method for requirements-based testing allows to consider different classes
of requirements where requirements of one class shall be more important for testing then
others. There may be several reasons for classifying requirements in such a way, for
example: Safety-critical requirements may be concerned in more depth; for a new variant
of a system the testers interest may lie mainly in the specific requirements for that variant;
requirements which are more likely to be executed by the users should be reflected in more
tests; or requirements which were changed or introduced during development and were not
part of the initial requirements documents should be tested more extensively, since these
may be not that elaborated than other requirements.

In Table 1 scenarios for all informal requirements of WindowControl are stated. The orig-
inal requirements R4 and R9 are replaced by R4a / R4b and R9a / R9b. In our example



step 0 1 2 3

R1
In switch open open

pos middle moving
Out motor down down

error ⊥ ⊥

R2
In switch (open) (open) ⊥

pos (middle) (moving) moving
Out motor (down) (down) stop

error (⊥) (⊥) ⊥

R3
In switch (open) (open) open

pos (middle) (moving) bottom
Out motor (down) (down) stop

error (⊥) (⊥) ⊥

R4a
In switch (open) close close close

pos (⊥) moving ⊥ ⊥
Out motor (down) ⊥ ⊥ ⊥

error (⊥) ⊥ ⊥ ⊥

R4b
In switch (open) close ⊥ close

pos (⊥) moving ⊥ ⊥
Out motor (down) ⊥ ⊥ up

error (⊥) ⊥ ⊥ ⊥

R5
In switch (open) (open) open

pos (middle) (moving) middle
Out motor (down) (down) stop

error (⊥) (⊥) err

step 0 1 2 3

R6
In switch close close

pos middle moving
Out motor up up

error ⊥ ⊥

R7
In switch (close) (close) ⊥

pos (middle) (moving) moving
Out motor (up) (up) stop

error (⊥) (⊥) ⊥

R8
In switch (close) (close) close

pos (middle) (moving) top
Out motor (up) (up) stop

error (⊥) (⊥) ⊥

R9a
In switch (close) open open open

pos (⊥) moving ⊥ ⊥
Out motor (up) ⊥ ⊥ ⊥

error (⊥) ⊥ ⊥ ⊥

R9b
In switch (close) open ⊥ open

pos (⊥) moving ⊥ ⊥
Out motor (up) ⊥ ⊥ down

error (⊥) ⊥ ⊥ ⊥

R10
In switch (close) (close) close

pos (middle) (moving) middle
Out motor (up) (up) stop

error (⊥) (⊥) err

Table 1: Example scenarios for the informal stated requirements. (Actions in brackets denote the
pre-condition)

we assume the following additional requirement which has been revealed later (e. g. due
to some technical limitations of the switch): ”If the switch switches from open to close
(or vice versa) the movement of the window must stop until the switch was fully released,
thus no signal from the switch is sent.”

Thus R4 and R9 had to be adapted. We are now, for example, interested in test cases which
focus specially on the new added requirements. Hence we classify the requirements in the
set REQorig of original requirements and in the set REQnew of new added requirements:

REQorig = {R1,R2,R3,R5,R6,R7,R8,R10}
REQnew = {R4a,R4b,R9a,R9b}

4 Building the Model

The scenario specifications as well as the informal requirements serve as the basis for
building the behavior model of the system. The model should be given in some state
machine or in the form of some state charts [Ha87] dialect.



4.1 Completion of the Specification

In the proposed test generation method two properties must hold for the model: (a) the in-
put and output alphabet of the model and the set of scenarios must be equal or a bijection
between the alphabets must be defined. (b) The model must accept all defined require-
ment scenarios. Since the scenarios—and the informal requirements, too—do in general
not specify the complete behavior of the system, additional information is added during
modeling. In contrast to the scenarios the model is total and deterministic, thus for every
input sequence the corresponding output sequence has to be retrieved. The additional in-
formation contained in the model may stem from implicit or domain-specific knowledge
or according to the experience of the designer (see the note in end of section 3.1).

T5T1

T16
T32

T45

T38, T39, T40,
T42, T43, T44

T28
T20

T29, T30, T36

T21, T22, T23
T46, 

T47, T48

T37, T41

T31T14

T25, T26, T27T17, T18, T19

T33, T34, T35

T13, T15, T24

T3, T4, T6, T8, 
T9, T10, T11, T12T2 T7

Down Idle Up

Pause

from REQorig

from REQnew

not in scenarios

Figure 2: Model of WindowControl. Each edge denotes a set of transitions identified by Tx; see
table 2 for details. The different styles of the edges represent the class of the transitions.

4.2 Classification of Transitions

Figure 2 and table 2 specify a model of WindowControl given as Mealy machine [Me55].
The classification of requirements introduced in section 3.4 is assigned to the transitions
in the model: If a transition is fired during the execution of the main part of scenario r
the class of the transition will be the class of r. (If scenarios of different classes fire the
same transition a prioritization of classes must be defined.) For transitions which are not
contained in any scenario no class is assigned. Note that in our example the transitions
which lead from/to the Pause state are added due to the later introduced requirements
REQnew .



tr
Soure Input Output Dest. fired by ClassState switch pos motor error State scenario

T1 Idle open ⊥ down ⊥ Down R1 orig
T2 Idle open top down ⊥ Down –
T3 Idle open bottom ⊥ ⊥ Idle –
T4 Idle open moving ⊥ err Idle –
T5 Idle close ⊥ up ⊥ Up R6 orig

...
T13 Down open ⊥ ⊥ err Idle R5 orig
T14 Down open top down ⊥ Down –
T15 Down open bottom ⊥ ⊥ Idle R3 orig
T16 Down open moving down ⊥ Down R1 orig

...
T20 Down close moving ⊥ ⊥ Pause R4a, R4b new

...
T24 Down ⊥ moving ⊥ ⊥ Idle R2 orig

...
T28 Up open moving ⊥ ⊥ Pause R9a, R9b new
T29 Up close ⊥ ⊥ err Idle R10 orig
T30 Up close top ⊥ ⊥ Idle R8 orig
T31 Up close bottom up ⊥ Up –
T32 Up close moving up ⊥ Up R6 orig

...
T36 Up ⊥ moving ⊥ ⊥ Idle R7 orig
T37 Pause open ⊥ ⊥ ⊥ Pause R9a new

...
T41 Pause close ⊥ ⊥ ⊥ Pause R4a new

...
T45 Pause ⊥ ⊥ ⊥ ⊥ Idle R4b, R9b new
T46 Pause ⊥ top ⊥ ⊥ Idle –
T47 Pause ⊥ bottom ⊥ ⊥ Idle –
T48 Pause ⊥ moving ⊥ err Idle –

Table 2: Excerpt of the transition relation for the Mealy machine in the WindowControl example.
Also the scenarios in which a transition is fired is stated as well as the resulting class of the transition.
(In the table we left out some of the transition where no class could be assigned.)

5 Test Case Generation

Since we want to get test cases according to the specified requirements (or its scenarios
respectively) the test case generation is done separately for each requirement. The full set
of test cases for the system is the union of test cases generated for each requirement. The
key idea of the method is to retrieve a specific sub-model for every requirement and to
generate test cases from these sub-models.

5.1 Building the Sub-Model for a Requirement Scenario

The sub-model for a specific requirement is built according to the classification of the
transitions and a weighting of the classes. For k different classes the weighting is defined



by a vector (l0, l1, ..., lk) with every li ∈ IN, li ≥ 0. Here l0 is the default weighting for
transitions which are in no class and li, 0 > i ≥ k is the weighting for the k different
classes. For the WindowControl example with classes orig and new let us choose the
weighting (l0, lorig, lnew) = (0, 1, 2).

The algorithm for selecting the sub-model is stated in figure 3. Consider for example
requirement R1 of WindowControl: In the main part of R1 transitions T1 and T16 fire,
the only state reached by these transitions is Down. With the above defined weighting
(0, 1, 2) in addition all paths starting in Down are selected which comprise a maximum
of one transition in class REQorig and a maximum of two transitions in REQnew (and
no unclassified transitions1). A possible path is for example T20–T45–T5. In figure 4 the
resulting sub-model for R1 is shown as well as the sub-model for R4a.

For a requirement scenario r and the weighting (l0, l1, … lk)

select the set Trans(r) of transitions which fire in the main part of r;

add Trans(r) to the sub-model;

from every state s which is reached by a transition in Trans(r)

search for all paths p starting in s where

p comprises a maximum of li transitions of class i ; 

add the transitions on p to the sub-model;

add all states connected to one of the transitions in the sub -model;

Figure 3: Algorithm for building the sub-models

The test case generation is applied to every requirements-based sub-model. A structural
test case specification, like transition coverage, is used to support automation. Thus a
tracing is given from a requirement to the set of test cases generated from the requirements-
specific sub-model.

5.2 Choosing the right Weighting

By applying the algorithm of the recent section, sub-models are built according to the
weighting of requirement classes. The effect of a higher weighting of a requirements class
is a stronger influence on the sub-models for all requirements—thus the requirements in
the class are tested in more detail in the combination with all other requirements. For the
question on an optimal setting of the weighting no general answer can be stated because
it highly depends on the project specific properties: Size of the model, distance of the
model to a complete graph and the size of the set of very detailed requirements scenarios.
Two situations should be avoided: Setting the weightings too high the sub-model may

1Of course, in reality it is not wise to set one of the weighting parameters to 0 since this will exclude these
transitions in the sub-model. But in the small WindowControl example used in this paper we set l0 = 0 because
otherwise building the sub-models would result in the full model again. This problem should not arise in realistic
models which are quite larger in general.



T5T1

T16

T45

T20

T37, T41

T13, T15, T24
Down Idle Up

Pause

R1: T5T1

T45

T28
T20

T37, T41

Down Idle Up

Pause

R4a:

Figure 4: Examples of sub-models for WindowControl requirements R1 and R4a. (Transitions which
are contained in the requirement are underlined. Notion of transitions is in Figure 2)

often result in the complete model again, setting the weightings too low the resulting sub-
models may only comprise the original requirements scenario but not much more.

In contrast to only use structural criteria for test case generation the proposed method has
the advantage that by the weighting parameters the test case generation can be adjusted
to the specific situation in a project. We believe that most experienced testers have an
intuitive understanding what ”valuable” test cases would look like. Fully-automated test
generation approaches may indeed often result in test cases which fulfill a certain coverage
criteria but it is also very likely that such test cases look somehow odd in the eye of an
experienced tester. He may have chosen a very different set of test cases manually. By
applying our method the tester has the possibility to adjust the weighting parameters and
direct the test case generation to achieve appropriate results. An iterative process could be
applied: The weighting will be set to some initial values first and the resulting test cases
are reviewed. The weighting then may be adjusted if necessary.

6 Example Results

We have applied the proposed method which uses requirements-based sub-models as well
as test case generation on the full model to the WindowControl Example. As well as in the
sub-models as in the full model we used transition coverage and the CLP-based test case
generator of AutoFOCUS [Pr04].

When generating tests from the full model—which is here the union of the sub-models2—
we retrieved by transition coverage 12 test cases with an average length of 2.25 steps.
Transition T1 was executed in 5 test cases, T5 in 7, T28 in 3 and all others in one test
case.

Generating tests form the sub-models resulted first in a total of 62 test cases, between 4
and 8 test cases from every requirements’ sub-model. After removing duplicates and test

2The original model of figure 2 contains many unclassified transitions which are not contained in any of the
later created sub-models due to the (0, 1, 2) weighting we chose. For making results more comparable we used
for test case generation of the full model instead the model which results from the union of submodes, which
does not contain the unclassified transitions



T36T24

T5T1

T16 T32

T45

T37

T28
T20

T29

T15

T41

T30

T13
Down Idle Up

Pause

T36T24

T5T1

T16 T32

T45

T37

T28
T20

T29

T15

T41

T30

T13
Down Idle Up

Pause

T36T24

T5T1

T16 T32

T45

T37

T28T20

T29

T15

T41

T30

T13
Down Idle Up

Pause

T36T24

T5T1

T16 T32

T45

T37

T28
T20

T29

T15

T41

T30

T13
Down Idle Up

Pause

T36T24

T5T1

T16 T32

T45

T37

T28
T20

T29

T15

T41

T30

T13
Down Idle Up

Pause

T36T24

T5T1

T16 T32

T45

T37

T28
T20

T29

T15

T41

T30

T13
Down Idle Up

Pause

T36T24

T5T1

T16 T32

T45

T37

T28
T20

T29

T15

T41

T30

T13
Down Idle Up

Pause

T36T24

T5T1

T16 T32

T45

T37

T28T20

T29

T15

T41

T30

T13
Down Idle Up

Pause

T36T24

T5T1

T16 T32

T45

T37

T28
T20

T29

T15

T41

T30

T13
Down Idle Up

Pause

T36T24

T5T1

T16 T32

T45

T37

T28T20

T29

T15

T41

T30

T13
Down Idle Up

Pause

(a) Tests from the full model, reaching Pause

(b) Tests from the requirements based sub-models, reaching Pause

Figure 5: Comparision of test cases reaching the Pause state. (Test cases are indicated by the se-
quence of bold transitions in the model.)

cases which were prefixes of other test cases the set of test cases comprised finally 14 test
cases with an average length of 2.43 steps. Transitions T1 and T5 were each contained in
7 test cases, T20 and T28 in 3, T37, T41 and T45 in 2 and all other transitions in one test
case.

The later added requirements introduced in section 4 of REQnew resulted in adding the
Pause state. In figure 5 we illustrate the test cases generated from (a) the full model and (b)
from the requirements specific sub-models reaching this state. Tests from the full model
using transition coverage result in 4 test cases whereas tests from the sub-models result 6
test-cases. By using the full model only one test case (which is also shorter) was generated
which tests requirements of REQnew in combination with the function of moving the
window down. Using test generation from the sub-models results in contrast in three test
cases which combine moving the window down with the requirements of REQnew as well
as in three test cases where these requirements are combined with moving the window up.
This was the effect of the higher weighting of REQnew .

7 Conclusion and Further Work

We have proposed a test method for generating requirements based tests. The method
combines the advantages of structural and functional test case specifications: It supports
automation in large parts, is based on the explicit defined requirements of the system, is
adjustable to the projects’ needs and improves testing of combinations of requirements.
The method requires scenarios as examples for each requirement. A classification and
weighting of requirements allows to control the influence of requirements on the resulting



test cases. The tester has the possibility to control the generation process by adjusting
weighting parameters. The results of the example show that an improved coverage of the
requirements can be achieved.

Further work will include larger case studies as well as describing the method for more
elaborated requirement specification techniques (like message sequence charts) and other
notions of state machines, e. g. state charts. We assume that these are quite straightforward
tasks and expect that the principles of the method will hold as well. Furthermore we are
working on a metrics for quantifying requirements coverage; first results indicate that we
are able to measure a better requirements coverage with the proposed method.

References

[DM03] C. Denger and M. Medina Mora. Test case derived from requirement specification.
IESE-Report 033.03/E, Fraunhofer IESE, Kaiserslautern, Germany, April 2003.

[GH99] Angelo Gargantini and Constance Heitmeyer. Using Model Checking to Generate Tests
from Requirements Specifications. Software Engineering - ESEC/FSE’99: 7th Euro-
pean Software Engineering Conference, Held Jointly with the 7th ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering, Toulouse, France, September 1999.
Proceedings, pages 146–162, 1999.

[GHN93] Jens Grabowski, Dieter Hogrefe, and Robert Nahm. Test Case Generation with Test
Purpose Specification by MSCs. In O. Faergemand and A. Sarma, editors, SDL’93 -
Using Objects, North-Holland, October 1993.

[Ha87] David Harel. Statecharts: A Visual Formulation for Complex Systems. Sci. Comput.
Program., 8(3):231–274, 1987.

[HMR04] G. Hamon, L. de Moura, and J. Rushby. Generating efficient test sets with a model
checker. In Software Engineering and Formal Methods, 2004. SEFM 2004. Proceedings
of the Second International Conference on, pages 261–270, 2004.

[HDW04] M.P.E. Heimdahl, G. Devaraj, and R. Weber. Specification test coverage adequacy cri-
teria = specification test generation inadequacy criteria? In High Assurance Systems
Engineering, 2004. Proceedings. Eighth IEEE International Symposium on, pages 178–
186, 2004.

[HP02] Frank Houdek and Barbara Paech. Das Türsteuergerät eine Beispielspezifikation. IESE-
Report 002.02/D, Fraunhofer Institut Experimenteles Software Engineering (IESE),
Kaiserslautern, Germany, January 2002.

[Me55] G. H. Mealy. A method for Synthesizing Sequential Circuits. Bell System Technical
Journal, 34(5):1045 – 1079, September 1955.

[OB88] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and gener-
ating fuctional tests. Commun. ACM, 31(6):676–686, 1988.

[Pf06] Christian Pfaller, Andreas Fleischmann, Judith Hartmann, Martin Rappl, Sabine
Rittmann, and Doris Wild. On the integration of design and test: a model-based ap-
proach for embedded systems. In AST ’06: Proceedings of the 2006 international
workshop on Automation of software test, pages 15–21, New York, NY, USA, 2006.
ACM Press.



[Pr05] Alexander Pretschner, Wolfgang Prenninger, Stefan Wagner, Christian Kühnel, Martin
Baumgartner, B. Sostawa, R. Zölch, and T. Stauner. One evaluation of model-based test-
ing and its automation. In ICSE ’05: Proceedings of the 27th international conference
on Software engineering, pages 392–401, 2005.

[Pr03] Alexander Pretschner. Zum modellbasierten funktionalen Test reaktiver Systeme. PhD
thesis, Technische Universität München, Fakultät für Informatik, 2003.

[Pr04] A. Pretschner, O. Slotosch, E. Aiglstorfer, and S. Kriebel. Model-based testing for real.
International Journal on Software Tools for Technology Transfer (STTT), 5(2 - 3):140–
157, March 2004.

[RH03] S. Rayadurgam and M.P.E. Heimdahl. Generating MC/DC adequate test sequences
through model checking. In Software Engineering Workshop, 2003. Proceedings. 28th
Annual NASA Goddard, pages 91–96, 2003.


